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A mathematical model is introduced for simulating the contributions of shape
deviations and mounting errors to the dynamic behaviour of single and
multi-mesh geared systems. Parametric and external excitations are characterized
by using the contact conditions for both rigid and deformable bodies. The
corresponding excitation functions cover a broad range of frequencies which can
hardly be taken into account by time-step integration methods. To this end, an
iterative spectral method is extended to multi-mesh systems submitted to
multi-frequency excitations. The basic features of the method are detailed and its
range of validity is discussed by comparing its results with those given by a
time-step method combined to a normal contact algorithm. Finally, the potential
of the numerical procedure is illustrated by analyzing the dynamic couplings in
two different double-stage unit architectures.
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1. INTRODUCTION

As illustrated by the reviews of O� zgüven and Houser [1], Blankenship and Singh
[2], and Velex [3], the gear dynamics literature presents a large variety of models
mostly focused on single stage trains. Early research efforts on multi-mesh systems
comprise the works of Tordion and Gauvin [4] on parametric instabilities, Iida et
al. [5, 6], Choy et al. [7], Velex and Saada [8] who analyzed the modal
characteristics of coupled torsional–flexural vibrations in two-stage systems. The
linear behaviour of double mesh gear sets has been investigated by Umezawa et
al. [9], Velex and Saada [10], Linke and Börner [11] who considered time-varying
mesh stiffnesses and analyzed the possible interactions between each mesh for
several gear arrangements. The excitations caused by shape deviations have been
introduced by Rashidi and Krantz [12] on a split torque system and Kahraman
[13] on various double stage units, the authors determined the mode shapes and
the forced responses to parametric and external excitations. Parallel developments
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have been conducted on planetary gear train modellings by Kahraman [14], Saada
and Velex [15], and Velex and Flamand [16] where additional recent references
about planetary gear dynamic models can be found. Non-linear behaviours of
lightly loaded and/or lightly damped reverse-idler gear pairs with concurrent
clearances have been analyzed by Rook and Singh [17]. Vinayak et al. [18]
extended the formulation of Blankenship and Singh [19] for single mesh systems
to double stage units. The state equations are solved by using a multi-term
harmonic balance method and both linear time invariant (LTI) and linear
time-varying (LTV) coefficient systems are considered. In two more recent papers,
Vinayak and Singh [20, 21] introduced the influence of gear blank compliances on
LTI multi-mesh drive models.

The literature review reveals that most of the multi-stage simulations use
simplified and global excitation models mainly based on transmission errors
introduced as some displacement functions at the mesh interfaces. As discussed
in reference [22], transmission error under load is essentially bidimensional in
nature and combines rigid-body displacements and deflections whose contri-
butions should be clearly separated. Consequently, it is believed that the problem
of contact and force couplings between mating flanks with real deviations and
geometrical errors in multi-mesh gear dynamics has yet to be addressed. From a
numerical point of view, the major difficulty comes from the scale differences in
characteristic dimensions (from a few microns for a tooth shape defect to
approximately a meter for a shaft length) and in characteristic periods (from a
fraction of the tooth passing period to the system basic period which is much
larger).

The present paper is an attempt to bridge this gap, its main objectives are: (i)
to present a modular approach based on a finite element procedure (mass, stiffness
matrices and elementary second members) valid for single and multi-mesh systems;
(ii) to consider a more refined 3D tooth contact model than the ones used in the
multi-stage dynamic models of the literature and to include actual shape deviations
and mounting errors on all pinions and gears; (iii) to extend the iterative spectral
method originally developed by Perret-Liaudet and Sabot [23], Perret-Liaudet [24],
and Perret-Liaudet and Sabot [25] in order to account for single and double stage
units with realistic geometrical errors generating broad band external and
parametric excitations; (iv) to validate the proposed resolution technique by
comparing some of its results to those given by a time-step integration scheme;
and (v) to illustrate the potential of the methodology by some practical
applications on double stage systems with a combination of usual shape deviations
and errors.

2. STATE OF REFERENCE

Following Velex and Maatar [22], rigid-body motions define the state of
reference for the multi-mesh dynamic formulation. Each potential line of contact
on all base planes is discretized in elementary cells centred in Mi , one potential
point of contact. In order to simulate the contribution of defects and shape
modifications, a discrete normal deviation es (Mi ), where subscript s refers to stage
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s, is attributed to each cell of the grid. With M* denoting a non-singular point
of contact on the base plane of stage s, rigid-body kinematics imposes

RbgsVgs +RbpsVps + osės (M*)/cos bbs =0, (1)

with

ės (M*)= (d/dt){max (es (Mi ))}, (2)

and os =+1 for a pinion positive rotation, os =−1 for a pinion negative rotation.
Vps , Vgs are the rigid-body angular velocities of the pinion and gear of stage s, bbs

is the base helix angle of stage s and Rbps , Rbgs are the base radii of the pinion
and the gear of stage s. (A list of notation is given in the Appendix.)

Upon assuming that friction forces on tooth flanks can be neglected compared
to normal loads and keeping first order terms only (see reference [22] for more
details), the Kinetic Energy Theorem yields the relation between input and output
torques (Cin , Cout ) and angular velocities (Vin , Vout ) as

s
Nshaft

k

JkV� kVk =CinVin +CoutVout , (3)

where Jk represents the polar moment of inertia of the shaft line k and Nshaft is
the number of shaft lines of the drive.

In practice, Vin and Cout are imposed and the remaining unknowns can be
determined by using equations (1) and (3). Mechanical arrangements with multiple
inputs and outputs can be taken into account by the proposed formulation but
the numerical applications in this paper are kept limited to the systems with a
single input and output.

3. DEFORMED STATE

3.1.  

The model is an extension of the formulation proposed by Velex and Maatar
[22] for single stage units. The fundamental differences are due to the different
orientations of the pinion-gear centre-lines and the introduction of several frames
of reference for the degree-of-freedom definition. Each pinion or gear is
assimilated to a rigid cylinder with all six degrees of freedom: i.e., three
translations and three rotations which are considered as small quantities in the
vicinity of rigid-body motions. For generality, the following conventions are
established: (a) the degrees of freedom attributed to the pinion and the gear of
stage 1 are defined with respect to the frame (R1) such that (Op1, s1) is along the
centre line of stage 1 (Op1, Og1); (b) the degree-of-freedom vector attributed to the
pinion of stage s is defined in the same frame of reference as the degree-of-freedom
vector of the gear of stage s−1; (c) the degree-of-freedom vector of the gear of
stage s is defined in the frame linked to the pinion-gear centre line of stage s.

Upon isolating a given pinion-gear pair, the most general situation, can be
represented as shown in Figure 1. The deformable part of the pinion-gear system
is assimilated to a Winckler type foundation formed by a series of lumped
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Figure 1. Degree-of-freedom definition (positive rotation of pinion).

stiffnesses ksi distributed along the potential lines of contact on the theoretical base
planes [19, 22] (see Figure 2). Such a ‘‘thin-slice’’ approach does not include any
convective effect and can hardly give the exact tooth load distribution especially
near the flank edges. However, comparisons with experimental data on
narrow-faced gears [22, 32, 33] indicate that the predicted transmission errors are
correct while tooth load distributions remain acceptable for moderate defect
amplitudes. Mesh stiffnesses ksi can be determined by various methods (finite
elements, Weber–Banaschek formulae [34], ISO/DIS 6336 formula [35], . . .). For
the isolated spur or helical gear pair defined in Table 1, quasi-static transmission
errors under load (1500 Nm on pinion) for ideal geometries have been calculated

Figure 2. Mesh stiffness modelling.
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T 1

Gear data

Pinion Gear

Number of teeth (Z1, Z2) 27 63
Width (mm) 72 (spur) or 36 (helical)
Module (mm) 4
Pressure angle (deg) 20
Helix angle (deg) 0 (spur) or 16 (helical)
Addendum coefficient 1·0 1·0
Dedendum coefficient 1·4 1·4
Shift profile coefficient 0·0 0·0

by using an extended 3D tooth contact model [36] and the present ‘‘thin-slice’’
formulation with two different stiffness modellings. Such a simplified approach is
certainly not as accurate as 3D contact models at the local scale (edge effects,
butressing effects, . . .) but the results in Figure 3 show that the proposed mesh
interface model can be considered as a good compromise for transmission error
calculations. Extensions to gear dynamics is straightforward and, moreover, the
time-dependent rocking moments at gear centres appear naturally in the state
equations contrary to the classical formulations based on a single mesh stiffness
(even if it is deduced from sophisticated tooth contact models).

In the present paper, the potential of the model together with the interest and
limitations of the iterative spectral method are illustrated by using a uniform
distribution of mesh stiffness per unit contact length derived from the Draft
Standard ISO/DIS 6336 formula.

The deflection at Mi , a potential point of contact of stage s is equivalent to the
normal approach with respect to the state of reference minus the initial gap des (Mi )
and can be expressed as

Ds (Mi )= TVs (Mi )qs − des (Mi ) (4)

submitted to the constraint

Ds (Mi )a 0 (5)

for an actual point of contact, while Ds (Mi )E 0 implies that Mi should be excluded
off the contact lines.

des (Mi )= es (M*)− es (Mi ) represents the equivalent normal deviation at Mi

and accounts for geometrical errors and deviations possibly produced by tooth
flank modifications, misalignments, eccentricities, . . . . qs is the degree-of-freedom
vector of stage s defined as

qs = T(ups , vps , wps , fps , cps , ups , ugs , vgs , wgs , fgs , cgs , ugs ). (6)
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Vs (Mi ) is the so-called structure vector relative to an isolated stage s whose
components are

TVs (Mi )= {sin bbs , cos bbs sin ks , os cos bbs cos ks ,

osRbps sin bbs sin ks + os [p1s (Mi ) sin bbs − hs (Mi )] cos ks ,

−Rbps sin bbs cos ks −[p1s (Mi ) sin bbs − hs (Mi )] sin ks ,

osRbps cos bbs , −sin bbs , −cos bbs sin aps , −os cos bbs cos aps ,

−osRbgs sin bbs sin aps + os [p2s (Mi ) sin bbs + hs (Mi )] cos aps ,

−Rbgs sin bbs cos aps −[p2s (Mi ) sin bbs + hs (Mi )] sin aps , osRbgs cos bbs} (7)

with ks = aps − osgs , and p1s (Mi ) the distance from a potential point of contact Mi

to pinion, p2s (Mi ) the distance from a potential point of contact Mi to gear, and
hs (Mi ) the co-ordinate of a potential point of contact Mi along the line of contact
(origin at the intersection of T1T2 and the line of contact (see Figure 2)).

Figure 3. Quasi-static transmission errors under load by a ‘‘thin-slice’’ model and a 3-D model
with convective effects. (a) Spur gear example; (b) helical gear example. ——, Weber–Banaschek;
–––, from ISO; ——, 3D model.
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In the rest of the text, equation (4) is simplified by considering the average
structure vector Vms , defined as

Vms =
1

Tms g
Tms

0 0 1
Ncs(t)

s
Ncs(t)

i

Vs (Mi )1 dt, (8)

where Tms is the mesh period of stage s and Ncs(t) represents the instantaneous
number of contacting cells or the number of stiffnesses in compression on the base
plane of stage s. At this stage, it should be pointed out that the instantaneous
number of contacting cells Ncs(t) can be unknown because of a possible reduction
in the actual contact radio which depends on both tooth flank deviations and
actual tooth load. In such a case, Ncs(t) and Vms are evaluated as indicated in
equation (18) of section 3.3.

For stage s, the pinion-gear pair strain energy reads

Us (t)=
1
2

s
Ncs(t)

i=1

ksiDs (Mi )2, (9)

which, upon using equations (4)–(8), gives

Us (t)= 1
2
Tqs$ s

Ncs(t)

i=1

ksiVms
TVms%qs − Tqs s

Ncs(t)

i=1

ksides (Mi )Vms +
1
2

s
Ncs(t)

i=1

kside2
s (Mi ) (10)

Here

$ s
Ncs(t)

i=1

ksiVms
TVms% and s

Ncs(t)

i=1

ksides (Mi )Vms

are the time-dependent possibly non-linear elementary stiffness matrix and
elementary excitation vector associated to stage s.

Upon neglecting second order terms and gyroscopic effects, the inertial kinetic
energy of stage s is expressed as

To
s = 1

2[mps [u̇2
ps +(v̇ps +Sps )2 + (ẇps +Cps )2]+ Ips [f� 2

ps +c� 2
ps ]+ Iops [Vps + u� ps ]2

+mgs [u̇2
gs +(v̇gs +Sgs )2 + (ẇgs +Cgs )2]+ Igs [f� 2

gs +c� 2
gs ]+ Iogs [Vgs + u� gs ]2],

(11)

with

Sp,gs =−ep,gsVp,gs sin (Vp,gst− lp,gs ), Cp,gs = ep,gsVp,gs cos (Vp,gst− lp,gs ).

lps , lgs define the angular position of the eccentricity of the pinion and gear of stage
s, respectively, mps , mgs are the masses, Ips , Igs and Iops , Iogs are respectively the
transverse and polar moments of inertia of the pinion and the gear of stage s, and
eps , egs are the eccentricities on the pinion and gear of stage s (see Figure 4).
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Figure 4. Eccentricities on pinion and gear.

Figure 5. Auxiliary mechanical systems for quasi-static contact analyses. (a) Dual mesh systems;
(b) idler gear.
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Figure 6. Reduction unit with an idler gear (type B).

Lagrange’s equations lead to the following elementary mass matrix and
excitation vector:

[Ms ]=diag (mps , mps , mps , Ips , Ips , Iops , mgs , mgs , mgs , Igs , Igs , Iogs ), (12)

Hs (t)= T(0, −mpsC� ps , −mpsS� ps , 0, 0, IopsV� ps , 0, mgsC� gs , −mgsS� gs , 0, 0, IogsV� gs ).

(13)

3.2.  

A complete drive can be decomposed into a set of pinion-gear elements, shaft
elements (including axial, flexural and torsional displacements) and lumped
parameter elements in order to simulate the contributions of bearings, couplings,
load machines [16] . . . . After eliminating the redundant mass matrices for a pinion
or a gear common to several meshes, assembly of all elementary matrices and

Figure 7. Influence of A
 12 on mesh stiffness functions. ——, 1st stage; ——, 2nd stage, A
 12=0°,
——, 2nd stage, A
 12=4°; ––, 2nd stage, A
 12 =8°.
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Figure 8. Simple stage drive model (54 d.o.f.).

vectors lead to the differential system valid for both reverse idler configurations
and multi-stage sets:

[M]X� +[C]X� +[K]X+$ s
Nstage

s=1

Dks (t)[Gs ]%X

=Fo+ s
Nstage

s=1 $H
 s (t)+0 s
Ncs(t)

i

ksides (Mi )1V
ms%. (14)

Here [M], [C ], [K ] are the constant mass, damping and stiffness matrices, H
 s (t)
and V
ms represent Hs (t) and Vms completed by zeros to the total system size, Nstage
is the number of stages (meshes).

In equation (14), the average and time-varying parts of all mesh stiffnesses have
been separated as

s
Ncs(t)

i

ksi = kms +Dks (t), (15)

and the following notations have been introduced:

[K]= [Kc]+ s
Nstage

s

kmsV

.


ms
TV

.


ms , [Gs ]=V

.


ms
TV

.


ms , (16, 17)

with [Kc] the constant stiffness matrix associated to the shaft-bearing-coupling
system.
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3.3.   

The stage equations are non-linear with time-varying (or position-varying)
coefficients Dks (t) and sNcs(t)

i
ksides (Mi ). Solutions of such equations being very

computationally intensive especially for multi-mesh systems, a simplified
approach conceptually close to the one introduced by Özgüven and Houser [26]
and extended by Vinayak et al. [18] is used. The actual excitations are
approximated by their corresponding quasi-static expressions, i.e., when
rigid-body rotations are close to zero. Upon neglecting the influence of long wave
length defects on global load distributions, the associated linear time-averaged
system (averaged over one mesh period) is solved in order to get a static solution
vector X�o and the corresponding mesh forces and moments. In a second step, the

Figure 9. Comparisons between direct and Ritz methods. (a) Spur gear example; (b) helical gear
example. Number of modes. —q—, 5; —r—, 10; —R—, 15; —w—, 25.
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T 2

Shaft, bearing data

Left side length Right side length External diameter
(mm) (mm) (mm)

Input shaft 233·55 98·43 80·00
Output shaft 211·81 76·69 90·00
Bearing For all bearings, radial stiffness kp =4×108 N/m

Figure 10. Evolution of TE shape factors versus pinion speed (perfect spur and helical gears).
—Q—, Spectral method (spur); —E—, Newmark method (spur); —R—, Spectral method (helical);
—W—, Newmark method (helical).

Figure 11. Pitch errors an spur (——) and helical (——) gears.
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Figure 12. Spectrum of quasi-static transmission error under load (helical gear).

excitation functions generated by each individual mesh are determined by several
quasi-static contact analyses (with all shape deviations and mounting errors)
conducted mesh by mesh with the proper boundary conditions on forces and
moments in order to account for the influence of the neighbouring pinion-gear
pairs [27]. Each stage, i.e., a pinion-gear pair and its supports, is isolated and the
contributions from its mechanical environment are replaced by the equivalent set
of forces and moments determined by the classical formulae in rigid-body
mechanics and the finite element shape functions for double stage drives. The
principle is illustrated in Figure 5 for two possible configurations of double stage
gear sets. In these examples, each isolated sub-system is described by the
36-degree-of-freedom model presented in reference [22] but, depending on the

Figure 13. Comparisons between Newmark and spectral methods (pitch errors, tip reliefs).
—Q—, Spectral (spur); —E—, Newmark (spur); —R—, Spectral (helical); —W—, Newmark
(helical).
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Figure 14. Comparisons between Newmark and spectral methods (perfect spur gear, damping
5%). Key as Figure 13.

complexity of the gear set, more sophisticated auxiliary models can be used if
needed.

The following approximations are introduced:

Ncs (t)= s
Ns(t)

i

H(Ds (Mi ))3 s
Ns(t)

i

H(Dso (Mi )), (18)

s
Ncs(t)

i

ksi = s
Ns(t)

i

ksiH(Ds (Mi ))3 s
Ns(t)

i

ksiH(Dso (Mi )), (19)

s
Ncs(t)

i

ksides (Mi )= s
Ns(t)

i

ksides (Mi )H(Ds (Mi ))3 s
Ns(t)

i

ksides (Mi )H(Dso (Mi )). (20)

Figure 15. Influence of the number of discretization points per mesh period on dynamic
transmission errors. —Q—, 32 pts; —E—, 18·963 pts; —R—, 12 pts; —W—, 9·482 pts.



1.50E–05

–1.50E–05

–2.00E–05

–1.00E–05

–5.00E–06

0.00E+00

5.00E–06

1.00E–05

50 10

(a)

15 20 25

Normalized time (t/Tm)

N
o

-l
o

a
d

 T
E

 (
m

)

0

–7000

–8000

–6000

–5000

–4000

–3000

–2000

–1000

50 10 15 20 25

F
o

rc
e 

(N
)

(b)

270

230

240

250

260

543210

Normalized frequency f/fm

20
 l

o
g

 (
a

m
p

li
tu

d
e)

100

60

50

70

80

90

543210

     875

Fig. 16a.

Fig. 16b.
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Here H(x) is the Heaviside unit function, H(x)=1 if xa 0, H(x)=0 if xE 0,
and Dso (Mi )= lim Ds (Mi ) when Vp,gs:0. Also Ns(t) is the nominal (or maximum)
time-varying number of contacting cells on stage s (see reference [28] for the exact
expressions).

In such conditions, it is clear that the amplitude jumps caused by total contact
losses cannot be simulated. However, for smoother conditions, i.e. partial contact
losses, the validity of the approximation depends on the influence of the dynamic
behaviour on the instantaneous contact lengths. Such partial contacts correspond
to a reduced actual contact ratio, for example, due to a combination of light loads
and (i) large tip reliefs which can delay the engagements, (ii) some lead
modifications which can unload the tooth flank edges, etc. . . . Upon assuming that
mesh stiffnesses and contact lengths are nearly proportional, a partial contact
index l defined as the actual average mesh stiffness to the nominal mesh stiffness
ratio at low speed (‘‘nominal’’ refers to a full contact from engagement to the end

Fig. 16c.

Figure 16. Two different filtering levels on the excitation functions. (a) Original excitation
functions and no-load TE; (b) filtered excitation spectra and no-load TE, —— level 1, R, level 2;
(c) recomposition of the excitation functions (original functions are in Figure 16(a)), key as (b).
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Figure 17. Influence of the filter on dynamic transmission errors. Key as Figure 16(b).

Figure 18. Influence of partial contact non-linearities on dynamic transmission errors. l values
(%): ——, 85, spectral; —R—, 85, Newmark; ——, 68, spectral; —R—, 68, Newmark.

of recess) will be subsequently used as an indicator of the contact condition quality
with respect to the ideal situation (full contact).

For a multi-mesh system with intermediate gears simultaneously in contact with
two other pinions or gears (see Figure 6), the excitation functions associated to
each mesh are not independent because they are controlled by the power
circulation and the corresponding relative orientations of the base planes. The
method introduced by Velex and Flamand [16] for epicyclic drives is applied and
illustrated in Figure 7 by an example of mesh stiffness functions for three different
relative orientations of the base planes (double stage gear set).
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Figure 19. Finite element model of a double-stage unit (type A) (78 d.o.f.).

Figure 20. Finite element model of a double-stage unit (type B) (54 d.o.f.).
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4. SOLUTION IN THE FREQUENCY DOMAIN

4.1.    R 

The principles of the methodology can be found in references [16, 29]. A
particular stable solution of equation (14) is sought as a linear combination formed
by the static solution X�o of equation (14) superimposed on a truncated linear

T 3

Gear data

1st stage 2nd stage
ZXXXXCXXXXV ZXXXXCXXXXV

Pinion Gear Pinion Gear

Number of teeth (Z1, Z2) 27 63 25 69
Width (mm) 72 72 100 100
Module (mm) 4 6
Pressure angle (degree) 20 20
Helix angle (degree) 0 (spur) or 16 (helical) 0 (spur) or 12 (helical)
Addendum coefficient 1·0 1·0 1·0 1·0
Dedendum coefficient 1·4 1·4 1·4 1·4
Shift profile coefficient 0·0 0·0 0·0 0·0

T 4

Shaft, bearing data

Left side length Right side length External diameter
(mm) (mm) (mm)

Input shaft 233·55 98·43 80·00
Intermediate 1st stage 211·81 76·69 90·00

shaft 2nd stage 92·43 196·07 90·00
Output shaft 96·77 366·70 133·35
Bearing For all bearings, radial stiffness kp =4×108 N/m

T 5

Gear data

Pinion Idler gear Gear

Number of teeth (Z1, Z2) 23 39 67
Width (mm) 60 60 60
Module (mm) 6
Pressure angle (degree) 20
Helix angle (degree) 0 (spur) or 12 (helical)
Addendum coefficient 1·0 1·0 1·0
Dedendum coefficient 1·4 1·4 1·4
Shift profile coefficient 0·0 0·0 0·0
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T 6

Shaft, bearing and load machine data

Left side length Right side length External diameter
(mm) (mm) (mm)

Input shaft 350·00 100·00 80·00
Intermediate shaft 150·00 100·00 100·00
Output shaft 150·00 300·00 120·00
Bearing For all bearings, radial stiffness kp =4×108 N/m
Load and motor inertia Im =6 kg m2, If =6 kg m2

combination of modeshapes [F] of the linear time-averaged system (pseudo-mode
shapes): i.e.,

X=X�o +[F]d, (21)

with d the reduced unknown vector in the pseudo-modal basis.
Introducing X�o is interesting not only because parametric excitations depend on

it, but also for the simulation of real geared drives often linked to the load
machines by elastic couplings which can dynamically isolate the gear from its
environment. In such a case, a solution constructed upon a modal basis only may
be incompatible with a continuous torque transmission from the input to the
output.

The present paper is mainly focussed on tooth contact dynamic analyses and
the mode shapes in [F] are selected according to their percentages of strain energy
stored in the gear elements [15, 16]. Upon rewriting strain and kinetic energies with

Figure 21. Mesh stiffnesses of the type A double-stage unit. ——, 1st stage; ––, 2nd stage.
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Figure 22. (a) Comparisons between the direct and spectral methods, type A multi-mesh system;
(b) comparisons between direct and spectral methods, type B multi-mesh system. (a) —Q—, pinion
1, spectral; —e—, pinion 1, Newmark; —R—, pinion 2, spectral; —w—, pinion 2, Newmark. (b)
—Q—, pinion, spectral; —e—, pinion, Newmark; —R—, intermediate gear, spectral; —w—,
intermediate gear, Newmark; ——, output gear, spectral; ——, output gear, Newmark.

Figure 23. Mesh stiffnesses of the type B double-stage unit. ——, 1st stage; ––, 2nd stage.
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equation (21), Lagrange’s equations together with the static equilibrium equation
lead to the reduced differential system

[Mf ]d� +[Cf ]d� +[Kf ]d+ s
Nstage

s

Dks (t)[Gfs ]d

= s
Nstage

s

[−(Dks (t)T[F][Gs ]X�o )+ T[F]H
 s (t)

+ s
Ns(t)

i

ksides (Mi )H(Dso (Mi ))T[F]V
 ms )], (22)

with [Gfs ]= T[F][Gs ][F].

Figure 24. Influence of some profile modifications on dynamic transmission errors (double stage,
type A, 25 mode shapes). (a) 1st stage; (b) 2nd stage. —Q—, No modification; —E—, short relief;
—R—, ‘‘optimum’’ relief.
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T 7

Major tooth critical frequencies for spur (helical) gears
(type A)

Frequency (Hz) r1 (%) r2 (%)

3310 (3272) 41 (42) 1 (10)
5009 (4831) 26 (17) 10 (10)
5443 (5492) 11 (15) 10 (2·8)
1981 (1980) 6 (6) 10 (10)
3526 (3611) 1 (10) 67 (69)

Figure 25. Modeshape at 3310 Hz (major tooth critical frequency for stage 1; spur gears, type A).
(a) Bending; (b) torsion.
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Figure 26. Modeshape at 3526 Hz (major tooth critical frequency for stage 2; spur gears, type A).
(a) Bending; (b) torsion.

Figure 27. Pitch errors on the type A gear set. (a) Stage 1; (b) Stage 2. ––, pinion; ——, gear.
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As an illustration of the potential of the method in gear dynamics, the original
equations of motion in the physical space (14) and the reduced system (22) are
integrated by the same time-step Newmark procedure. The practical applications
correspond to the single stage unit defined in Figure 8 and Tables 1 and 2. Figure
9 shows, for different modal bases [F], the corresponding maximum relative
deviations in terms of dynamic transmission errors under load (results from
equation (14) being the reference) which, for 25 modes, is reduced to less than 2%
over the 0–1600 rad/s speed range.

Fig. 28a & b.
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Fig. 28c & d.

Figure 28. (a) First stage transmission error spectrum at 300 rad/s on pinion 1, type A multi-mesh
system; (b) second stage transmission error spectrum at 300 rad/s on pinion 1, type A multi-mesh
system; (c) first stage transmission error spectrum at 1200 rad/s on pinion 1, type A multi-mesh
system; (d) second stage transmission error spectrum at 1200 rad/s on pinion 1, type A multi-mesh
system.

In equation (22), the modal mass and stiffness matrices [Mf ], [Kf ] are diagonal,
the modal damping matrix [Cf ] is supposed to be diagonal according to Basile’s
hypothesis for moderate modal densities so that the ath equation can be expressed
as
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T 8

Major tooth critical frequencies for spur (helical) gears
(type B)

Frequency (Hz) r1 (%) r2 (%)

3557 (3522) 78 (78) 5 (5)
6248 (6222) 4 (4) 10 (10)
4488 (4440) 3·8 (2·8) 1·4 (2·7)
2338 (2342) 3·3 (3) 85 (81)
2768 (2750) 3 (2·7) 0·4 (10)

mad� a + cad� a + kada = fa (t)− s
Nstage

s

Dks (t)�[Gfs ]d�a , (23)

where ma , ca , ka are the ath diagonal terms of [Mf ], [Cf ] and [Kf ], respectively,
while fa (t) is the ath component of

s
Nstage

s

(T[F]H
 s (t)+ s
Ncs(t)

i

ksides (Mi )H(Dso (Mi ))T[F]V
 ms −Dks (t)T[F][Gs ]X�o ).

�A�a represents the ath component of vector A.

4.2. F T

Each equation (23) is projected in the frequency domain by using the classical
Fourier Transform and becomes

Da (v)=Ta (v)6Fa (v)− s
Nstage

s

DKs (v)&�[Gf ]D(v)�a7. (24)

& denotes the product of convolution, Da (v) is the ath component of
D(v)= f+a

−a d(t) ejvt dt, and Ta (v)= {(ka −v2ma )− jvca}/{(ka −v2ma )2 +
(vca )2} is the transfer function associated with the ath modeshape of [F].

From a practical point of view, Fa (v), DKs (v), Fourier Transforms of fa (t) and
Dks (t), respectively, are some of the numerical results of the quasi-static analyses
and are evaluated by using a classical discrete Fast Fourier Transform (FFT). This
process implies the well-known constraint on signal samplings i.e., 2N points of
discretization whose consequences on the precision of the numerical solution are
analyzed in section 5.2. In order to account for the speed reduction between two
stages, the discretized excitation functions generated by each mesh are frequency
scaled by using the system basic frequency as a common reference to all signals.
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4.3.   

Following Perret-Liaudet and Sabot [23], and Perret-Liaudet [24], the solutions
of equations (24) are derived by an iterative procedure (Fixed-Point Method).
Compared to that in references [23, 24], a relaxation of the solution has been
introduced in order to improve the convergence. The numerical scheme can be
synthesized as follows:

Initialization,

D(o)
a (v)=Ta (v)Fa (v); (25)

Figure 29. Modeshape at 3557 Hz (major tooth critical frequency for stage 1; spur gears, type B).
(a) Bending; (b) torsion.
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Figure 30. Modeshape at 2338 Hz (major tooth critical frequency for stage 2; spur gears, type B).
(a) Bending; (b) torsion.

iteration L,

D(L)
a (v)=Ta (v)6Fa (v)− s

Nstage

s

DKs (v)&�[Gf ]D(L−1)(v)�a7, (26)

D(L)
a (v)C (1− s)D(L)

a (v)+ sD(L−1)
a (v), 0A sA 0·5. (27, 28)

Convergence is evaluated by determining

Ra =(ED(L)
a −ED(L−1)

a )/ED(L−1)
a , (29)
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where ED(L)
a = f+a

−a D(L)
a (v)2 dv; the iterative process is stopped when the maximum

value of Ra is less than a given threshold oAA1.
A general discussion of the iterative scheme convergence in connection with the

possible parametric instabilities caused by time-varying stiffnesses is difficult and
beyond the scope of the present paper. Nonetheless, from a practical point of view,
the following points have been observed.

(i) For the majority of the helical gear applications, convergence is good and
relaxation is, most of the time, useless.

(ii) Problems may arise for spur gears (oscillating remainder Ra , for instance).
According to the authors’ experience, a relaxation factor s=0·2 is generally

sufficient to lead to a smooth convergence. However, divergence may happen
especially for low number of d.o.f. models for which time-varying stiffnesses
become prominent (particularly for purely torsional models).

(iii) As already reported [23], it seems that the positions of the divergence zones
(if any) can be related to the parametric instability areas of the associated
undamped free system.

Figure 31. Dynamic transmission errors on the two stages. Influence of long reliefs ‘(‘optimum’’
relief from a stage-by-stage analysis, 25 modeshapes). (a) 1st stage; (b) 2nd stage. —Q—, No
modification; —E—, ‘‘optimum’’ relief.
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Figure 32. Pitch error distributions on the two meshes (type B drive). (a) 1st stage; (b) 2nd stage.
(a) ——, pinion; ——, idler gear. (b) ——, Idler gear; ——, wheel.

Some technical modifications have been brought to the original technique
proposed in references [23, 24]. The original discrete excitation spectra exhibit a
series of equally spaced components whose number is equal to half of the number
of points representing the original digitized signals (by virtue of the symmetry and
skew-symmetry of the real and imaginary parts of the spectrum). In such
conditions, it is not really advantageous to solve the state equations in the
frequency domain since the number of operations in both time and frequency
domains are comparable. Consequently, a filter is applied to the initial excitation
spectra and also at each iteration in order to keep the relevant frequency
components only and limit the expansion of the spectrum bandwidths generated
by the successive products of convolution (see equation (26)). Two criteria are
simultaneously considered: i.e., (i) the contribution of each frequency component
to the total signal energy which is evaluated by calculating Ea (v)= =Da (v)=2/f+a

−a

=Da (v)=2 dv (the threshold used in the numerical applications is 1%); (ii) the
significant width of the spectra, upon assuming that contributions at a frequency
higher than fmaxi = nf max (fmesh ) for nf =10, can be neglected in mechanical
vibration analysis.

Another modification of the original procedure is the calculation of the product
of convolution in the frequency domain in order to avoid time-consuming
transfers between the frequency and time domains until the final solution is
obtained. All excitation spectra being discrete, they can be expressed as a
combination of impulses modelled by using the Dirac delta function d as

DKs (v)= s
nk

nfk=1

{RKnfk (d(v+vnfk )+ d(v−vnfk ))

+jIKnfk (d(v+vnfk )− d(v−vnfk ))}, (30)

�[Gf ]D(v)�a = s
ng

nfg=1

{RGnfg (d(v+vnfg )+ d(v−vnfg ))

+jIGnfg (d(v+vnfg )− d(v−vnfg ))}, (31)
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where RKnfk ( · ), IKnfk ( · ), RGnfg ( · ) and IGnfg ( · ) represent the real and imaginary
parts of the discrete spectra of DKs (v) and �[Gf ]D(v)�a , nk and ng are the numbers
of relevant frequencies after filtering of DKs (v) and �[Gf ]D(v)�a .

At each iteration, the different products of convolution are replaced by finite
summations over a range of selected frequency components. Finally, upon using
the relation d(v−va )&d(v−vb )= d(v−(va +vb )), one obtains

DKs (v)&�[Gf]D(v)�a

= s
nk

nfk

s
ng

nfg

[RKnfkRGnfg −IKnfkIGnfg ][d(v−(vnfk +vnfg ))+ d(v+(vnfk +vnfg )

+j s
nk

nfk

s
ng

nfg

[RKnfkIGnfg +IKnfkRGnfg ][d(v+(vnfk +vnfg ))

−d(v−(vnfk +vnfg ))]

Figure 33. Influence of pitch errors on transmission errors (type B drive, 25 modeshapes). (a) 1st
stage; (b) 2nd stage. —Q—, No modification. —E—, pitch errors.



(a)
 1.40E+02

 4.00E+01

 6.00E+01

8.00E+01

1.20E+02

1.00E+02

 2.00E+01

 1.40E+02

 4.00E+01

 6.00E+01

8.00E+01

1.20E+02

1.00E+02

 2.00E+01

20
 l

o
g

 (
a

m
p

li
tu

d
e)

(b)

1.00E+03
5.00E+02 1.50E+03

2.00E+03
2.50E+03

3.00E+03
3.50E+03

4.00E+03
4.50E+03

0.00E+00 5.00E+03

Frequency (Hz)

20
 l

o
g

 (
a

m
p

li
tu

d
e)

f3

f2
f1

f1+f2

fm

fm–f1+f2

fm–f2

fm–f1

fm+f1–f2

fm+f2

fm+f1

f3

f2

f1

f1+f2

fm

Same side-bands
as for

stage 1

2.fm

3.fm 4.fm

2.fm

2.fm–f2

2.fm–f1 2.fm+f2

3.fm

4.fm

2.fm–f1+f2

2.fm+f1–f2

2.fm+f1

     893

Fig. 34a & b.

+s
nk

nfk

s
ng

nfg

[RKnfkRGnfg +IKnfkIGnfg ][d(v−(vnfk −vnfg ))

+d(v+(vnfk −vnfg ))]

+j s
nk

nfk

s
ng

nfg

[−RKnfkIGnfg +IKnfkRGnfg ][d(v+(vnfk −vnfg ))

+d(v−(vnfk −vnfg ))], (32)
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Fig. 34c & d.

Figure 34. (a) First stage transmission error spectrum at 300 rad/s on pinion 1, type B multi-mesh
system; (b) second stage transmission error spectrum at 300 rad/s on pinion 1, type B multi-mesh
system; (c) first stage transmission error spectrum at 1200 rad/s on pinion 1, type B multi-mesh
system; (d) second stage transmission error spectrum at 1200 rad/s on pinion 1, type B multi-mesh
system.

which can be rapidly calculated by numerical means. The operations are kept
limited to the significant amplitudes and, at each iteration, only the relevant
frequencies (dimensioned values—see section 4.2) and amplitudes are stored and
used in the next iteration. It can be seen from the structure of equation (32) that
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the frequencies corresponding to the harmonic combinations of each mesh do
appear in the process.

5. ON THE NUMERICAL BEHAVIOUR OF THE SPECTRAL METHOD

5.1.   -       

In order to validate the proposed methodology, several response curves
delivered by the iterative spectral method and a time-step integration (implicit
Newmark’s scheme) combined with a normal contact algorithm [22] are compared.
The time-step procedure, considered as the reference in what follows, accounts for
contact non-linearities and solves the original equations of motion without any of
the simplifications of equations (15)–(20) which are inherent in the Spectral
Method. For both methods, each mesh period is discretized into 64 time-steps. The
single mesh system under consideration is depicted in Figure 8 and the
gear-shaft-bearing data are listed in Tables 1 and 2. For all selected modeshapes
(15 modes in this example), a unique damping factor of 0·1 is introduced in the
simulations. This numerical value corresponds to the experimentally identified
data of Kubo et al. [37] for spur gears. (A review of some significant measured
damping factors for gear tooth critical frequencies can be found in reference [3]).

The first set of comparisons deals with ideal errorless spur and helical gears so
that the only excitations come from the time-varying mesh stiffness. Transmission
error shape factors SF(TE) defined as

SF(TE)=$si

RTEi (v)2 +ITEi (v)2%
1/2

, (33)

with RTEi (v) and ITEi (v), the ith frequency component (real and imaginary
parts, respectively) of transmission error, are evaluated and their evolutions versus
pinion speed are plotted in Figure 10. A good agreement between the two methods
is observed although some discrepancies are noticed at high speeds (near
1200 rad/s). They are attributed to the averaged structure vector in the spectral
method whose influence, because of the bending slopes f and C, may be
non-negligible when pinion and/or gear are not centred on their shafts. (It can be
observed from equation (7) that the f and C components of the structure vector
Vs (Mi ) are the only ones depending on the position of Mi and, consequently, on
the averaging operation in equation (8).) With the usual damping levels in gear
dynamics, the pseudo-modal truncation implies only a few tests and, generally, is
not a problem. Further details on the selection of the relevant mode shapes for
tooth critical frequency analysis on multi-mesh gear sets can be found in reference
[16].

Multi-frequency excitations are introduced by (a) a time-varying mesh stiffness,
(b) linear short profile reliefs on pinion and gear tooth tips (amplitude 30 mm,
extent of modification 20% of the active profile), (c) pitch errors on the pinion
only (in order to keep reasonable computational times for the time-step technique)
whose distribution and amplitudes are given in Figure 11. An image of the
excitation spectra is given by the frequency contents of the quasi-static
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transmission error under load represented in Figure 12. Transmission error shape
factor evolutions calculated by the two methods again compare favourably as
shown in Figure 13. For this example, computational times are approximately five
times (spur gears) and eight times (helical gears) shorter when using the iterative
spectral method.

Finally, one of the limits of the iterative spectral method is pointed out on the
spur gear example with a lower modal damping factor of 0·05 (see Figure 14). The
response curve has been determined by time-step integrations for steady-state
conditions and by keeping the same initial conditions at all speeds (X=X�o ,
X� =X� =0) which make it impossible to determine any multiple solutions and
related unstable branches. However, the gear dynamic behaviour is clearly
dominated by a large amplitude jump at the major critical speed (softening
behaviour corresponding to single-sided impacts) which, as obvious from the
theoretical formulation, is not reproduced by the spectral method. Consequently,
this method seems to be suitable for essentially heavily loaded gear systems. From
a qualitative point of view, possible tooth separations could be detected during
computation by examining the minimum value of each mesh deflection as backlash
probably occurs at stage s if Ds (Mi )E 0, for all points Mi of stage s.

5.2.        

The initial excitation functions being introduced by using numerical Fast
Fourier Transforms, one of the basic constraints comes from the total number of
discretization steps which has to be compatible with the use of the classical FFT’s
algorithm, i.e., 2N points (N integer) for most of the practical situations. Depending
on the gear tooth numbers and on the gear set arrangement, 2N points over one
stage period can imply a non-integer number of discretization steps per mesh
period which leads to an artificial modulation of the mesh frequency. A detailed
analysis is presented in reference [27]; for modal damping factors between 0·05 and
0·1, it is found that dynamic response curves are not really modified by these
numerical errors as illustrated in Figure 15 for an errorless spur gear example
analyzed with 32, 18·963, 12 and 9·482 time-steps per mesh period.

For broad band excitation spectra, the practical interest of the proposed method
mainly lies on the filtering of the excitation functions during the iterative process.
The filter influence is analyzed by comparing the dynamic transmission errors
obtained by using two different filtering levels (see Figures 16 and 17). A wide
range of frequencies is conserved in level 1 while level 2 deals with the prominent
frequency components only. It is clear from Figure 17, that, for the treated
example, the use of rough excitation spectra (level 2) gives excellent results almost
superimposed to the response curve calculated with more refined spectra.
Computational times associated to levels 2 and 1 are in a 1 to 3 ratio.

5.3.     

In this section, a parametric analysis is conducted in order to determine the
influence of some common mounting errors or defects on the Iterative Spectral
Method precision. As already discussed, backlash cannot be reproduced but the
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question of partial contacts together with the use of the linearized expressions of
section 3.3 has still to be addressed. Partial contacts on tooth flanks are introduced
through a pinion deviation (misalignment) and the difference in tooth contact
quality with respect to the nominal case is estimated by the partial contact index
l defined in section 3.3. It is observed in Figure 18 that transmission errors
compare favourably for l=85% (15% of contact loss over one mesh period at
low speed). For l=68%, the positions of the response curve peaks are still
acceptable but the low-medium speed transmission errors calculated by ISM and
time-step integrations become significantly different. The Iterative Spectral
Method does not converge correctly for l below 65%. From a physical point of
view, dynamic response levels increase and major tooth critical frequencies are
shifted towards lower speeds with an increasing misalignment amplitude. It is to
be noted that simulations with larger pseudo-modal bases (20 and 40 modes) lead
to similar response curves.

5.4.   - —   

Comparisons are extended to two classical gear arrangements, i.e., dual mesh
drives with four gears referred to as type A systems and dual mesh drives with
three gears (type B). The corresponding finite element models are described in
Figures 19 and 20, gear, shaft data are given in Tables 3–6. Pinions and gears are
supposed to be perfect and the only excitations come from the time-varying mesh
stiffnesses. In this section, only spur gear sets are considered.

The three shaft axes of the type A system in Figure 19 lie in the same plane and
the arbitrary initial phasing between the two mesh stiffness functions is set to be
zero as illustrated in Figure 21. All radial bearing stiffnesses are equal to 4E8N/m,
the input torque is 1500 Nm and a unique modal damping factor of 0·1 is
introduced. Computations in time-domain are conducted by the Newmark scheme
and shape factors are evaluated over the complete system period. The shape
factors of the pinion torsional degree of freedom obtained by time-step
integrations and by the spectral method are plotted in Figure 22(a). A very good
agreement is observed even if some slight differences appear near the major tooth
critical speed of stage 2.

Similar comparisons are made with the type B dual mesh example (see Figure
20); the shaft axes are again in the same plane and the resulting phasing between
the two mesh stiffnesses is imposed by the power circulation (see Figure 23). The
response curves delivered by the time-step scheme and the spectral method (see
Figure 22(b)) are extremely close and prove the validity of the proposed
methodology.

From a physical point of view, there are no clear couplings between the two
meshes of the type A system. On the contrary, similar critical speeds are found
for stages 1 and 2 of the type B gear set. A more detailed discussion of the response
spectral contents and mesh dynamic couplings is deferred to section 6.
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6. SOME APPLICATIONS TO DOUBLE MESH GEAR SETS

The potential of the proposed iterative spectral method is illustrated by some
applications to conventional fixed-axis systems with spur and helical gears. The
models account for time-varying mesh stiffnesses, flexible shafts, bearings, and
multi-frequency excitations generated by profile modifications and/or pitch errors.

6.1.  :  ,  

The mechanical system is the same as the one defined in section 5.4. Two
different kinds of profile modifications (identical on both meshes) are introduced:
(i) linear short reliefs of 30 mm amplitude on pinion and gear tooth tips with an
extent of modification corresponding to 20% of the active profile length; (ii) linear
long profile reliefs whose extents of modification are 40% of the active profile.

Dynamic transmission error shape factors for each mesh are given in Figure 24,
no clear couplings between the two stage dynamic behaviours are observed. The
most significant percentages of modal strain energy stored in mesh one (r1) and
in mesh two (r2) for spur and helical gears in Table 7 reveal that the two meshes
are largely uncoupled and that tooth critical frequencies for spur and helical gears
are nearly identical. The mode shapes corresponding to the two major tooth
critical frequencies for mesh one (3310 Hz) and two (3526 Hz) are represented in
Figures 25 and 26. The independence of the two meshes for bending and torsional
vibrations is clearly confirmed for these two modes. Because of the speed
reduction, critical frequency coincidences on the second stage are at higher speeds
compared to stage one.

As already reported for spur gear single mesh systems [29, 30, 31], long reliefs
can largely reduce the vibration levels over the whole speed range for a given load
while short reliefs are far less effective in reducing transmission error variations.

For the spur gear set with no profile modification, the pitch error distributions
in Figure 27 are introduced in order to analyze the transmission error spectral
contents after filtering. It is clear that a precise identification of every spectral ray
is not simple because of the many possible harmonic combinations, consequently,
only the clearly identified components are commented in the following discussion.
For clarity, the spectrum representations are limited to 5 kHz although higher
frequencies are conserved along the iterative process and in the final results.

(a) Medium speed spectra (300 rad/s)

The input stage TE spectrum in Figure 28(a) is mostly dominated by the input
and intermediate shaft rotational frequencies ( f1, f2), by its mesh frequencies
(Nfm1, N integer). The second stage mesh frequency and its multiples (Nfm2) are
also present but with lower amplitudes.

The output stage (see Figure 28(b)) exhibits some significant rays at the
intermediate and output shaft frequencies ( f2, f3), at mesh frequencies (Nfm1,
Nfm2). Only some modulation side-bands between fm2 and f2 are observed, the
relative importance of f2 which is the only common frequency of the two stages
is pointed out.
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(b) High speed spectra (1200 rad/s)

More frequencies are conserved by the filter (see Figures 28(c) and (d)) with,
in addition to what is reported in (a), some significant harmonic combinations
between the mesh frequencies ( fm1 − fm2), the mesh frequencies and the
intermediate shaft rotation ( fm1 − fm2 2 f2). The amplitudes at Nfm2 are larger
and some higher harmonics of f1, f2 and f3 are involved.

(c) General comments

The f3 component is generally weak because of the speed reduction effect and,
in agreement with the preceding remarks on mesh dynamic couplings, there is no
evidence of strong direct interactions between the input and output shaft
rotational frequencies. Low frequency contents of transmission errors are
particularly rich with some strong modulations between f1, f2, f3 and each stage
basic frequency. As opposed to the single stage example (Figure 12), no
modulation side-bands of the form Nfm1 2Mf1 appear in the filtered spectra of
this double stage application.

6.2.  :  ,  

The model under consideration is depicted in Figure 20, and gear and shaft
geometries are defined in Tables 5 and 6. As in section 6.1, modal strain energy
distributions are evaluated (Table 8) and the two mode shapes associated with the
major tooth critical frequencies (with the largest percentages of modal strain
energy) are shown in Figures 29 and 30. As opposed to the previous dual mesh
drive, some couplings between stages 1 and 2 emerge.

For long profile reliefs on both stages (same definition as in section 6.1), the
corresponding spur gear transmission error curves are plotted in Figure 31.
Transmission error shape factors are reduced at low and medium speeds but,
contrary to what is observed on the type A example, long reliefs are rather
ineffective near the major critical speeds. This difference is caused by the stronger
interactions (compared to type A) between the two meshes and it seems that
optimizing spur gear profile modifications on a stage-by-stage basis may be
inadequate.

The next example deals with pitch errors introduced on every gear of the
reduction unit, their amplitudes and distributions are shown in Figure 32.
Transmission errors are determined for helical gears (b=12°) and their evolutions
versus the first stage pinion speed are represented in Figure 33. As already reported
for single mesh systems [22], pitch errors increase the average transmission error
levels but do not introduce any additional critical tooth frequencies. On the other
hand, amplifications at major critical speeds (with respect to quasi-static
transmission error levels) are lower than for errorless gears. As for the errorless
gear set, the major critical tooth frequency of one given mesh can be observed on
the other mesh response curve.

Finally, dynamic transmission error spectral contents are analyzed on the spur
gear set (no profile modification, pitch errors of Figure 32). The corresponding
spectra at 300 and 1200 rad/s on pinion are presented in Figures 34(a–d) and,
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as in section 6.1, only the clearly identified components are commented. The most
important amplitudes are attributed to the rotational frequencies (Nf1, Nf2, Nf3)
and the mesh frequency and its harmonics (Nfm), some harmonic combinations
( f1 + f2) and numerous side-bands (Nfm2 ( f1 − f2), Nfm2 f1, Nfm2 f2) emerge
after filtering. Contrary to the type A gear unit, the three rotational frequencies
appear in the transmission error signals of stages 1 and 2.

7. CONCLUSION

A modular and systematic formulation is proposed in order to include the
contributions of tooth shape modifications and mounting errors to single and
double stage geared system dynamic behaviours. The corresponding elementary
matrices and vectors combined with some classical finite elements and lumped
parameter elements can account for deformable shafts, bearings and time-varying,
possibly non-linear, mesh stiffnesses and excitation functions. The state equations
are solved by using the Iterative Spectral Method presented in reference [23] which
is adapted to a 3D gear mesh interface model and multi-mesh geared set dynamics
including combined multi-frequency parametric and external excitations. As far as
stiff non-linearities such as total contact losses are not considered, results of the
modified Iterative Spectral Method compare well with those delivered by a
time-step integration technique combined to a normal contact algorithm for highly
reduced computational times. Such a procedure allows extensive parametric
analyses that could hardly be conducted by using time-step methods. From a
practical point of view, it is shown in this paper that double mesh systems with
an idler gear (type B) exhibit stronger dynamic couplings than double stage
systems of the type A. In particular, the limitation of the definition of tooth shape
modifications on a stage by stage basis is pointed out.

The development of more refined models of gear elastic characteristics
(convective effects on tooth flanks, gear blank flexibility, . . . ) and the experimental
validation of the proposed methodology are some of the necessary extensions of
the present work.
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APPENDIX: MAIN NOTATIONS

A
 12 angle between the centre lines of stages 1 and 2
Cint , Cout input, output torque
ca modal damping coefficient associated with the ath modeshape
es (M*) maximum normal gap in the base plane of stage s
f1, f2, f3 rotational frequency of shaft 1 (input), shaft 2 (intermediate), shaft 3

(output)
fm mesh frequency
fm1 mesh frequency stage 1
fm2 mesh frequency stage 2
fa (t) defined in equation (23)
Ix spectrum imaginary part amplitudes
Ips , Igs pinion, gear transverse moment of inertia
Iops , Iigs pinion, gear polar moment of inertia
Jk polar moment of inertia of the kth shaft line
ksi stiffness of the ith cell in the base plane of stage s (Figure 2)
kms , Dks (t) average and time-varying component of stage s mesh stiffness
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ka average modal stiffness associated with the ath modeshape
mps , mgs mass of stage s pinion, gear
ma modal mass associated with the ath modeshape
M* a point of contact in rigid-body conditions
Ncs (t), Ns (t) actual and nominal time-varying number of contacting cells in the base

plane of stage s
Nstage number of stages
p1s (Mi ) distance from a potential point of contact Mi to pinion (Figure 2)
p2s (Mi ) distance from a potential point of contact Mi to gear (Figure 2)
qs degree-of-freedom vector of the pinion-gear pair of stage s
Rbps , Rbgs base radii of stage s pinion, gear
Rx spectrum real part amplitudes
SF(TE) shape factor of transmission error
TEi (v) ith frequency content of transmission error
Tms mesh period of stage s
T1 mid-point of the tangent between base plane and pinion base cylinder

(Figure 2)
T2 mid-point of the tangent between base plane and gear base cylinder

(Figure 2)
ups , vps , wps pinion translational degrees of freedom (stage s)
ugs , vgs , wgs gear translational degrees of freedom (stage s)
Vs (Mi ), Vms structure vector in Mi , average structure vector of stage s
aps apparent pressure angle (stage s)
bs , bbs helix angle, base helix angle (stage s)
d vector of the unknowns in the pseudo-modal basis
des (Mi ) normal gap at Mi , potential point of contact in the base plane of

stage s
fps , Cps , ups pinion rotational degrees of freedom (stage s)
fgs , Cgs , ugs gear rotational degrees of freedom (stage s)
lps , lgs angular position of the pinion, gear eccentricity (Figure 4)
hs (Mi ) co-ordinate of a potential point of contact Mi along the line of contact

(equation (7) and Figure 2)
r1, r2 percentages of modal strain energy on mesh 1 and 2, respectively
Ds (Mi ), Dso (Mi ) deflection at Mi , quasi-static deflection at Mi , (stage s)
Vint , Vout input, output rigid-body angular velocity
Vps , Vgs pinion, gear rigid-body angular velocity (stage s)
A

.


 vector A completed by zeros to the total system size
TA transpose of A (matrix or vector)
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